IM电竞·(中国)首页

IM电竞 IM电竞APP 下载机械零件论文十篇|IM电竞
全国IM电竞服务热线:0510-86179338
产品展示 PRODUCTS
联系我们 CONTACT US
手机:
0510-86179338
电话:
0510-86179338
邮箱:
adminIM@eyoucms.com
地址:
江阴市南闸街道开南路8号
行业新闻
当前位置: 首页 > 新闻动态 > 行业新闻
IM电竞 IM电竞APP 下载机械零件论文十篇
添加时间:2023-08-04

  IM电竞 IM电竞平台IM电竞 IM电竞平台论文摘要:检测是对机械零件中包括长度、角度、粗糙度、几何形状和相互位置等尺寸的测量。机械零件的检测极为重要,它是把握产品质量的关键环节,检测人员必须在充分准备的基础上按照程序进行,并要分析误差的产生原因。

  机械零件的技术要求很多,它有几何形状、尺寸公差、形位公差、表面粗糙度、材质的化学成份及硬度等。检测时先从何处着手,用哪些量具,采用什么样的先进方法,是检测中技术性很强的一个问题。为了使产品质量信得过,避免出现错检、误检和漏检,对此检测人员应遵守程序,做好各方面工作。

  1、阅读图纸。检验人员要通过对视图的分析,掌握零件的形体结构。首先分析主视图,然后按顺序分析其它视图。同时要把各视图由哪些表面组成,如平面、圆柱面、圆弧面、螺旋面等,组成表面的特征,如孔、槽等,它们之间的位置都要看懂、记清楚。检验人员要认真看图纸中的尺寸,通过看尺寸,可以了解零件的大小,看尺寸要从长、宽、高三个方向的设计基准进行分析,要分清定形尺寸、定位尺寸、关键尺寸,要分清精加工面、粗加工面和非加工面。在关键尺寸中,根据公差精度,表面粗糙度等级分析零件在整机中的作用,对于特殊零件,如齿轮、蜗轮蜗杆、丝杠、凸轮等有专业功能的零件,要会运用专业技术标准。掌握各类机械零件的国家标准,是检验人员的基本功。有表面需热处理的工序零件,应注意处理前后尺寸公差变化的情况。检验人员还应分析图纸中的标题栏,标题栏内标有所用材料零件名称,通过看标题栏,掌握零件所用材料规格、牌号和标准,从中分析材料的工艺性能,以及对加工质量的影响。工作中,我曾遇到这样一个问题,在铣床上加工一批不锈钢支架,因所选铣刀材料不对,造成加工表面粗糙度不好,并且效率较低,严重影响了产品精度与产品质量。我发现了问题严重性后,选择了合适材料的铣刀,试用后,速度又快,表面粗糙度又好。

  2、分析工艺文件。工艺文件是加工、检验零件的指导书,一定要认真仔细查看。按照加工顺序,对每个工序加工的部位、尺寸、工序余量、工艺尺寸换算都要认真审阅,同时应了解关键工序的装夹方法,定位基准和所使用的设备、工装夹具刀具等技术要求。往往有个别操作者不按工艺中所制订的工序加工,从而对整个机械零件的加工后造成不合格的后果,这一问题常常又被检验人员所忽视。待安装时,不能使用,造成了成批产品报废。

  3、合理选用量具、确定测量方法。当看清图纸和工艺文件后,下一步就是选取恰当的量具进行机械零件检测。根据被测工件的几何形状、尺寸大小、生产批量等选用。如测量圆柱台阶轴时,带公差装轴承部位,应选用卡尺、千分尺、钢板尺等;如测量带公差的内孔尺寸时,应选用卡尺、钢板尺、内径百分表或内径千分尺等。有些被测零件,用现有的量具不能直接检测,这就要求检测人员,根据一定的实践经验、书本理论知识,用现有的量具进行整改,或进行一系列检测工具的制作。

  1、合理选用测量基准。测量基准应尽量与设计基准、工艺基准重合。在任选基准时,要选用精度高,能保证测量时稳定可靠的部位作为检验的基准。如测量同轴度、圆跳动、套类零件以内孔,轴类零件以中心孔为基准;测量垂直度应以大面为基准;测量辊类零件的圆跳动以两端轴头下轴承的台阶(将两端轴承台阶放在“V”型铁上)为基准。

  2、表面检测。机械零件的破坏,一般总是从表面层开始的。产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。研究机械加工表面质量的目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规律,以便运用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的,如磕碰、划伤、变形、裂纹等。细长轴、薄壁件注意变形、冷冲件要注意裂纹、螺纹类零件、铜材质件要注意磕碰、划伤等。对以上检测的机械零件,检测完后,都要认真作记录,特别是半成品,对合格品、返修品、报废产品要分清,并作上标记,以免混淆不清。

  3、检测尺寸公差。测量时应尽量采用直接测量法,因为直接测量法比较简便,很直观,无需繁琐的计算,如测量轴的直径等。有些尺寸无法直接测量,就需用间接测量,间接测量方法比较麻烦,有时需用繁琐的函数计算,计算时要细心,不能少一个因素,如测量角度、锥度、孔心距等。当检查形状复杂,尺寸较多的零件时,测量前应先列一个清单,对要求的尺寸写在一边,实际测量的尺寸在另一边,按照清单一个尺寸一个尺寸的测量,并将测量结果直接填入实际尺寸一边。待测量完后,根据清单汇总的尺寸判断零件合格与否,这样既不会漏掉一个尺寸,又能保证检测质量。

  4、检测形位公差。按国家标准规定有14种形位公差项目。对于测量形位公差时,要注意应按国家标准或企业标准执行,如轴、长方件要测量直线度,键槽要测量其对称度。

  测量过程中,影响所得的数据准确性的因素非常多。测量误差可以分为三大类:随机误差、粗大误差、系统误差。

  1、随机误差。在相同条件下,测量同一量时误差的大小和方向都是变化的,而且没有变化的规律,这种误差就是随机误差。引起随机误差的原因有量具或者量仪各部分的间隙和变形,测量力的变化,目测或者估计的判断误差。消除的方法主要是从误差根源予以消除(减小温度波动、控制测量力等),还可以按照正态分布概率估算随机误差的大小。

  2、粗大误差。粗大误差是明显歪曲测量结果的误差。造成这种误差的原因是测量时精力不集中、疏忽大意,比如测量人员疏忽造成的读数误差、记录误差、计算误差,以及其他外界的不正常的干扰因素。含有粗大误差的测量值叫做坏值,应该剔除不用。

  3、系统误差。在相同条件下,重复测量同一量时误差的大小和方向保持不变,或者测量时条件改变,误差按照一定的规律变化,这种误差为系统误差。引起系统误差的原因有量具或者量仪的刻度不准确,校正量具或者量仪的校正工具有误差,精密测量时环境的温度没有在20度(摄氏温度)。消除系统误差方法有,测量前必须对所有计量器具进行检定,应当对照规程进行修正消除误差。另外,保证刻度对准零位,必须测量前,仔细检查计量器具,保证足够的准确性。

  流程影响机械制品质量的因素是多方面的,例如原材料质量、加工流程和工艺等,对于机械加工人员来说,必须严格按照规定的工艺和流程制造,尽量减少制造过程中外界因素造成的误差,下面针对机械加工工艺和其流程展开探讨。

  1.1制定加工工艺加工机械之前需要一定准备工作,主要是整理和设计零部件工艺路线,准备好每一道工序所需的工具和材料等,制定完善的机械加工工艺路线需要注意两点:首先,粗加工和精加工不能混淆,必须按照加工工艺的不同,安排合适的热处理时间,并且需要使用合适的加工设备;第二,最好先加工基准面,机械加工分为很多道工序,一般情况下需要优先加工基准面,这样才能保证后续加工孔位置和平面的精准度。

  1.2加工工艺流程机械零部件加工工艺流程分为两个部分,即前期加工工艺和后期加工工艺,这两个部分都要在技术监督下严格按照生产流程和工艺标准进行。通过加工原材料得到半成品,加工半成品后得到机械制品,但是除了加工半成品和原材料,还包括加工前的准备、输送与保存原材料、加工零部件毛坯等工序,可以看到,机械制造工作比较复杂。但是随着科学技术水平的提高,很多制造企业已经实现了制造自动化,运用科学的生产管理模式和先进的软件、硬件,实现机械制造的自动化、规范化和标准化,有效的提高了生产质量和生产效率,保证企业在激烈的市场竞争中有立足之地。

  2零部件精度影响因素分析下面将从几个方面,分析零部件精度受到的影响因素。

  2.1加工工艺影响一般情况下,零部件加工都是使用机床,机床精度就成为了零部件精度的影响因素之一,简单来说,机床控制加工刀具的速度和其他变化,而零部件直接受到加工刀具的作用,表面几何精度受到机床主轴回转误差的直接影响,如果机床存在主轴回转误差或者其他方面的精度问题,都会给零部件尺寸和外形带来较大的误差;再者,如果机床主轴径向、轴向发生轻微震动,也会影响零部件精度,举例来说,单纯的主轴角度摆动会造成零部件的圆柱度误差,而径向圆跳动则会造成圆度误差,但是圆度误差不会造成平面误差。所以,要保证零部件加工精度,要尽量增加机床主轴设计、安装、制造的精度,减少机床运行时的主轴偏差。除了使用刀具加工零部件,还需要使用专业夹具固定零部件,夹具精度也会影响零部件精度。夹具制造、安装都会产生误差,在使用过程中还会产生变形、磨损,这些都是造成夹具误差的因素,但是诸如使用中磨损等因素往往不被人们注意。在加工零部件的过程中,如果发现夹具有偏差,就需要及时采取措施调整,一般情况下可以采用补偿技术来减小误差,保证误差在可接受的范围内;部分机床自带补偿装置,直接使用补偿装置修正夹具误差即可。造成误差的原因是多方面的,矫正误差也并不见得一定准确,我们需要针对不同的情况采取不同的措施。

  2.2受力形变影响使用设备加工零部件时,设备会受到一定的外力作用,长此以往,设备材料会发生“疲劳”现象,发生不可逆转的形变,机械加工中,设备会受到重力、切削力等其他多种作用力,导致加工设备变形。现在机械制造企业大多数使用数控机床进行零部件加工,程序步骤、数值都预定好,但是由于加工设备产生形变,预定的数值和实际不相符合,夹具、刀具位置会发生变化,从而导致零部件的尺寸和几何误差,在零部件加工过程中,有几个方面的因素会造成受力形变误差:工件刚度:如果刀具、机床等设备的刚度远比零部件高,加工过程中刀具和机床就会对零部件产生外力造成其形变,影响零部件精度;刀具刚度:如果内型加工刀杆和外圆车刀强度有较大差异,刀杆就会受到外力产生形变,对加工孔精度产生影响。在零部件加工过程中,我们可以采用措施减小误差,例如:增强加工设备刚度,尽量使用抗压、抗拉性能较好的高强度材料等。

  2.3残余应力影响在零部件加工过程中会产生残余应力,例如锻造、铸造毛坯以及冷却时,由于毛坯各个组成部分材料不同,因此冷却速度也会有差异,材料伸缩速度差异造成形变。针对这种问题,可以采用包括震动时效和热时效在内的人工时效,什么是热时效?就是将零部件放在加热炉内加热,达到规定温度后和炉子共同冷却以消除应力。

  3.1误差补偿对于零部件加工过程中,设备的原始误差,我们可以采用误差补偿法,简单来说,就是人工制造一些误差,消除设备本身误差带来的影响以提高零部件精度;抑或制造误差来抵消设备误差。

  3.2降低原始误差这是最基本的做法,主要是提高夹具、机床、刀具等设备本身的精度,减小、消除设备应力,尽量让设备和零部件不受外力影响以减小形变。针对不同的影响零部件精度的因素,我们应采取不同的措施。

  可靠性设计是指以形成产品可靠性为目标的设计技术,又称概率设计,将外载荷、承受能力、零部件尺寸等各设计参数看作随机性的变量,并服从一定的分布,应用数理统计、概率论与力学理论,综合所有随机因素的影响,得出避免零部件出现破坏概率的相关公式,由此形成与实际情况相符合的零部件设计,确保零部件的可靠性和结构安全,控制失效的发生率在可接受的范围内。概率设计法的作用体现在两个问题的解决。首先,分析计算根据设计而进行,确定了产品的可靠度;其次,根据任务提出的可靠性指标,确定零部件的参数,从而帮助设计者和生产者对零部件可靠性有清晰明确的了解。

  目前,主要使用可靠性优化设计方法还是传统的设计方法。这种方法在设计机械零件时,一般都将零件的强度、应力和安全系数都是当作是单值的,将安全系数与根据实际使用经验规定的某一数值相比较,如果前者大于后者,就说明零件是安全的。但是由于没有考虑到各参数的随机性,把各个设计参数看成是单一的确定值,因此并不能预测零部件可靠运行的概率,很难与客观实际的最优化方案相符,设计人员也不好把握其设计产品的可靠性。

  以概率论和数理统计等作为工具的可靠性设计方法,避开了主观的人为因素在设计过程中的影响,外界条件变化得到了从整体上的把握,设计结果更贴近客观情况。可靠性设计广泛应用在机械零部件可靠性设计的各种问题中,更科学地解决了许多繁琐的传统设计方法有心无力的问题。

  机械零部件可靠性的设计不仅需要的是与时俱进、把脉时代的创新精神,更需要把握零部件质量保证和可靠性优化设计的科学方法。机械零部件可靠性设计是基于传统机械设计以及其他的优化设计方法进行的,由于机械产品有着千差万别的功能和结构相异之处,因此,机械零部件可靠性的设计方法以及优化方式的选择需要因地制宜。

  权衡设计是对可靠性、质量、体积、成本等要素进行综合衡量后,制定出最佳方案的设计方法。耐环境设计也是进行综合考虑的一种优化设计方式,从机械零部件生产之初,就将零部件在整个寿命周期内可能遭遇的各种环境影响考虑在内,包括运输的碰撞、空气干湿程度对设备的作用、设备保养合理程度等,通过对这些环境因素的分析,在零部件生产用料和生产技艺上加以优化,从而进行保护和保证零部件自身乃至机械设备的可靠性。

  机械设备的运作是整体性运作,处于完整的串联式系统中。实现“整体功能大于部分功能之和”的目标,优化机械设备的可靠性,首先需要优化零部件的可靠性。机械设备的零部件需要进行严格的选择和控制,对外购件需要严格把控,标准件和通用件要优先选用。选用之前要对零部件进行分析验证,最大程度利用故障分析成果,以成熟的经验和经过分析验证证实的方案。

  简化设计指的是在满足特定功能的条件下,设计应该合理简化,如零部件的数量尽量避免冗余。所谓“多个香炉多只鬼”,越复杂越容易出现错误和故障,可靠性的优化就更无从谈起了。这不仅是可靠性优化设计的一个基本原则,也是避开故障、提高可靠性的最有效方式。简化意味着减少不必要的部分,而并非依靠少部分超负荷承担大部分的工作,零部件的简化需要从整体着眼,仔细分析零部件的组合与配合的最佳方式。余度设计则是从整体入手,类似于计算机中的备份功能。通过对完成规定功能设置重复的结构、备件等,以防局部故障或失效时,机械设备整体系统依然保存着规定的功能。

  将应力一强度干涉理论作为基础原理支撑,把应力和强度作为服从一定分布的随机变量处理。处理设计对象中与设计有关的参数、变量等部分,成为服从特定的统计规律的随机变量,建立符合可靠性设计标准的概率数学模型,通过概率与数理统计理论和强度理论,得出在给定条件下零部件产生破坏的概率公式,求出在给定的可靠度中零部件的尺寸、寿命等,使其在符合要求并且得出最好的设计参数。IM电竞 IM电竞APP 下载这种方法巧妙地填补了常规设计的缺陷,而且较为贴近生产实际。

  综上所述,机械可靠性设计的方法是在传统方法以及旁支方式上得到发展与完善的。成功的机械零部件可靠性优化设计,在把握设计参数的随机性、多参数的设计以及在设计中预测该零部件的可靠度等问题上都有全局性思路的贯穿。想要在国际市场竞争上占据一席之地,拥有良好的可靠性是我国机械产品生产商努力的大方向,机械零部件的可靠性优化设计其重要性不言而喻。因此,在对这个问题进行研究时,不仅要有创新的思想,还要有科学可靠的设计方法。

  [1] 徐祺祥.机械产品的可靠性分析—— 介绍FMEA和FTA分析法[J].机械设计与研究,1984(1).

  [2] 何周琴.机械零部件可靠性设计之概率设计法[J].自动化与仪器仪表,2010(3).

  [3] 王新刚,张义民,王宝艳.机械零部件的动态可靠性分析[J].兵工学报,2009(11).

  [4] 王正.零部件与系统动态可靠性建模理论与方法[D].东北大学,2007.

  [5] 赵淑莹,杨晨升.基于可靠性的机械零部件设计研究[J].机械工程师,2010(3).

  [6] 王新刚.机械零部件时变可靠性稳健优化设计若干问题的研究[D].东北大学,2009.

  在当今工业生产中,对机械加工零件进行必要的检测,保证其质量是非常有必要的,其已经成为了有效控制产品质量的重要手段。在工业生产的过程中,检测机械零件的质量,对其质量进行严格的控制已经被广泛的应用了。

  机械加工生产是现代工业的重要内容。在竞争力非常激烈的今天,工业生产需要不断革新、保证质量来提高自身的市场竞争力。机械加工零件对于机械的重要性不言而喻。如果零件质量不达标,就会影响机器的运行,甚至还会带来难以挽回的结果。

  在实际加工过程中,受到了刀具形成变化以及材料特点等影响,零件的表面都会出现这样或者那样的问题,比如零件方向不准确、反光的特性非常差等问题。对机械加工零件表面进行检测时,其表面也会存在着微小的纹理缺陷,这些问题往往是无法逃避我们的眼睛的。然而,纹理缺陷利用计算机进行检测却是非常困难的,这对保证零件的质量是非常不利的。因此,加强对机械零件的表面纹理的检测力度是经济发展的要求,更是社会发展的必然选择,是非常有必要的。

  对图像进行滤波处理,可以有效抑制背景纹理的图像。相反,此时那些存在缺陷的纹理图像则会被极大的增强,从而使人们能够更清楚地区分开缺陷纹理与背景纹理,区分的时候是通过利用阈值分割方法来进行的。值得注意的是,在使用这种方法进行区分时会出现一些情况,一方面是存在缺陷目标,另一方面还存在着噪声点。也正因为如此,需要在使用过程中进行必要的处理,以此来达到消除掉噪声产生的影响。在处理的时候,一定要认清噪声点与纹理缺陷,两者的主要区别在于,纹理缺陷是存在有一定的形状的,而噪声点反映在二值图像上是随机分布的孤立点,其分布是随机的。

  实践应经证明:开运算对于消除细小的噪声以及平滑较大物体边界有着显著的效果。通过对图像进行相应的开运算,能够有效地消除孤立点。此外,由于开运算会经历一个先腐蚀、后膨胀的过程,还可以将因为图像分割而造成的误差有效消除掉。

  值得一提的是,在瑕疵、玷点的傅里叶频谱中所显现出来的纹理基本上是随机的,当采用滤波的方式处理完后,其纹理的信息会被有效保存,不至于丢失的很多。不仅如此,经过滤波处理后的图像,其纹理缺陷与其背景的灰度是有着非常大的差距的。也正因为如此,这种方法对机械加工零件的瑕疵、玷点的检测正确率可以保持在一个较高的水平上。此外,因为零件表面的划痕是有方向性的特点的,如果划痕与机械加工的纹理的方向是一致的时候,此时就很难检测出来,进而使检测正确率下降。

  机械加工零件的表面存在有纹理缺陷,这对零件的质量有着非常大的影响。采用有效的检测手段,将这些缺陷检测出来是非常有必要的。通过利用机械加工零件表面纹理图像检测的视觉检测方法,将缺陷纹理分离出来,可以使检测率大大提升,具有较强的实用性。

  [1]秦丽萍,林克正,师晶.缺陷检测中的边缘检测[A];黑龙江省计算机学会2007年学术交流年会论文集[C],2007.

  “作为生产力的一个要素,工程技术把科学原理转变为改造世界的动力,是科学发现和产业发展联系的桥梁;是产业革命、经济发展与社会进步的强大杠杆。”人类社会已经经历了三次工业革命。18世纪的机械工业革命产生了纺织工业、机械制造业、铁路运输业和煤炭工业等;第二次工业革命中崛起了电力工业、化工工业、冶金工业和汽车工业等;第三次工业革命催生了电子工业、计算机工业、空间工业、合成材料工业和原子能工业等。机械设计作为机械工程的技术基础在不断地更新与发展,机械设计课程的内容与教学方式也随着新科技的发展而不断进化,机械设计教学的基本要求就是使得学生获取机械产品设计的知识、拓展设计能力、提高素质和开启智慧。

  人们设计、制造、检测和销售产品是为了获取利润,在向用户提供使用价值的同时获得自己劳动应该得到的利润。劳动创造价值,机械产品的设计最终目的就是提供使用价值,同时获得劳动报酬。因此,价值—功能—原理—结构的产品设计思路认为,在设计产品的初期,设计者思考的不仅仅是产品应具有的功能,也必然考虑产品的市场销售能得到多少利润。

  在创新氛围日益浓厚的21世纪,创新教育与创新实践是各国教育界特别重视的问题。面对生命科学与技术为核心的21世纪,机械设计课程面临新的挑战。在新的世纪,机械设计教学不应“渴而穿井,斗而铸锥”,而是应该未雨绸缪、积极面对新的挑战。本文从当前科技的发展出发,讨论机械设计课程面临的挑战。

  17世纪和18世纪初叶是钟表时代,18世纪末叶和19世纪是蒸汽机时代。机构学的发展,出现了曲柄滑块原理的内燃机、汽轮机和水轮机等,实现了将柴油和汽油的化学能转化为机械能;原煤的化学能经热能转化为机械能;水的动能和势能转化为电能或机械能。这些技术发展进程中,诞生了机械设计课程。

  机械设计包括机械原理、机械零件和机械系统设计三部分内容。机械原理讨论机构的设计、运动分析和动力学分析。机械零件部分讨论机械零件的强度、刚度、振动稳定性和耐磨性等设计方法,并且介绍机械的结构设计。机械系统设计部分讨论机械系统的动平衡、速度波动调节以及系统方案优化设计等。机械产品的创新设计以上述三部分内容为基础,对产品设计进行改进或革新。

  1.机械原理。机构的设计与分析是机械原理的核心内容。常用的机构有:连杆机构、凸轮机构、齿轮机构、蜗杆结构、摩擦轮机构、棘轮机构、槽轮机构等。机构的演变或创新方法有:机构的组合、机构的演绎、机构的逆向设计以及新原理的应用等。机构组合是常用的设计方法,通过不同类型机构组合或者同类型机构的组合,得到实现运动轨迹的新组合机构。机构的演绎是通过改变机构的运动副、构件几何设计、机构的变结构等方法,获得新的机构设计。机构的逆向设计,常用主动构件和输出构件互换、增加或减少自由度数即原动件数,来获得新的机构设计方案。机构的运动分析和动力学分析,常用计算机辅助设计的方法来分析,以获得运动轨迹、加速度和跃度的变化曲线。机构的创新设计是机械产品创新的基本内容,也是对产品在较大程度上的革新。

  2.机械零件。机械零件分为通用零件和专用零件。机械零件部分介绍的是各类通用零部件,包括连接零件、传动零件、轴系零部件以及弹簧、机架和导轨等。连接零件有螺纹连接、销、键和花键、过盈连接、胶接、焊接和铆接等。传动部分有带传动、链传动、齿轮传动、蜗杆传动、摩擦轮传动等。轴系部分有轴承和轴的设计,其中轴承有滑动轴承、滚动轴承、空气轴承、电磁轴承和静电轴承等。机械零件的设计是针对零件的失效形式来进行的。首先由实践确定机械零件的失效形式,然后选择零件的材料和表面处理技术,以抵抗其失效形式,再依据相应的设计理论提出设计准则和设计公式,最后是设计零件的所有结构尺寸。另一方面,机械零件是物化的产品,其结构设计和制造工艺性设计也是关键方面。机械零件的创新设计方法有变结构的设计、组合设计以及采用新原理的设计等。

  3.机械系统设计。机械产品越来越复杂,组成机械产品的零件个数越来越多。机械系统的传统设计内容有动平衡、速度波动调节和分系统之间的匹配等。机械子系统的设计,包括动力系统、传动系统、执行系统、控制系统和辅助系统的设计。在计算技术发展后,针对系统层面出现了系统优化设计、系统可靠性设计和系统摩擦学设计,并且在产品设计中得到应用和推广。随着生态设计、全寿命周期设计、维修设计和自动化设计的发展,基于系统分析和计算仿真的设计软件包日益增多。经典的设计内容都可以由软件包来完成,然而对于新材料的机械零部件设计及其系统设计,仍需要理论和实验的应用基础研究,以获得设计准则和相应的设计方法。

  我国的机械工程高等教育是从20世纪初开始的,落后于欧洲的第一次产业革命200余年。因此,我国的机械工程科学与技术距世界先进水平有差距是有其历史原因的。在改革开放后,国家的载人航天、高速铁路和青藏铁路等重大工程的建设推动了机械、电气、信息和材料等学科技术的进步,同时也促进了不同学科的技术整合,以新的系统产品提供给消费者。然而,我国的工程教育历史较短,仍有待借鉴国外先进的工程教育经验和教育方法。目前,机械设计教学与产品设计面临的挑战有创新能力的培养、系统性的思维观、新的科学原理带来的挑战等。

  1.新材料带来的挑战。人类的发展史从某种意义上说也是人类利用和制造材料的历史。随着人们对石头、铜及其合金、铁及其合金、半导体材料的制造和使用,人类社会经历了石器时代、青铜时代、铁器时代和半导体时代。在上个世纪末,智能材料的发展非常迅速,例如压电材料、磁致伸缩材料、光敏材料等,机敏材料正得到更多的应用。在量子力学基础上出现的新智能材料,将为机械产品设计提供更广阔的空间。作为机械产品设计工程师,要时刻关注智能材料的进展及其制备技术。纳米材料作为一种介观尺度的材料,已在纳米添加剂方面得到工程应用。另一方面,材料的成本与市场供应也是产品设计阶段需要考虑的内容。新材料的发展与研制,为机械产品设计提供了更多的设计选择,也同时使得以前不可实现的产品功能得以实现。生物材料及其仿生技术是新材料的发展方向之一,设计师应关注这一方面的新进展、新技术和制造过程,在较短时间内将其应用于产品设计,为人们的安全、舒适的生活和健康提供新的产品。

  2.信息科技带来的挑战。从信息论和控制论的诞生开始,人们就进入了信息社会。计算技术的软件、硬件和系统技术,作为20世纪的标志性进展,以此为阶梯,人们开始了信息社会的生产与生活。信息技术使得地球变成了地球村,各地信息及时传递与互享共用,改变着人们的生活方式、生产方式和思维习惯等。毫无疑问,我们已经生活在信息社会里,信息技术对机械系统中的控制单元设计进行了彻底的变革。产品的设计涉及功能、结构、外部界面、用户界面和成本五个方面。产品的创新设计方法很多,例如前苏联学者G.S.Altshuller提出了创新问题解决方法。无人车间、无人制造工厂不再是人们的向往,而是已经成为现实。信息技术已经提供了虚拟战场、3D虚拟电影、虚拟产品模型、虚拟产品装配等一系列产品和相关的技术。机械制造的核心,机床已经是计算机控制的可编程设备,机械制造过程也已经是柔性的可变制造系统的生产线。可以预见,信息技术不仅会为人们的生活提供手机和无线网络等,也将提供虚拟的生活体验,例如虚拟的蹦极、虚拟侏罗纪公园等。信息科技对机械设计和机械制造的变革不会比电气化革命带来的少,而且更加深刻、更加深远。机械设计工程师要学习新的信息科学与信息技术,用其革新机械产品的设计、机械制造过程和管理过程。

  3.智能科学带来的挑战。21世纪是生命科学与技术的时代,生命的基本特征就是智能与生长。智能科学的发展与信息科学密切相关,也可以说是以信息科技为基础的。简单智能产品,例如冰箱、空调等,已成为商用产品,而且新的更高智能程度产品也在日新月异的发展之中。基于信息技术的智能交通系统、公园导游系统、空中管制系统等产品已具雏形,随着信息处理的高度智能化发展,这些信息管理系统也需不断地升级。1956年到1961年可以说是AI研究的形成时期,卡内基-梅隆大学、麻省理工学院和IBM公司开始了AI的早期研究。1961年到20世纪80年代是AI成长期,80年代是其快速发展期,80年代后人工智能技术步入实用化成熟期。取得了国际象棋、口语识别、机器视角和专家系统等研究成果。

  4.生态环境带来的挑战。随着生产的规模扩大,对自然资源的消耗日益严重,伴随出现的环境污染也日益突出。在今天的生产发展阶段,保护自然生态环境的压力更加突出。为了保护人类的生活环境,必须从产品设计、产品制造到产品回收循环利用的全周期,考虑产品的环境绿色性。产品供应链的全球化、网络化与节能设计,是新世纪机械产品设计需要考虑的新问题。机械产品的设计阶段就很大程度上决定了产品的环境友好性。从材料选择来说,应采用材料种类更少的设计方案;从计算参数设计来看,应提高功能参数与质量之比,更大程度地发挥材料的性能;从结构设计来说,应尽可能地循环利用报废机器的零件,或者通过最低成本的再制造,然后循环利用零部件;在功能设计来说,应尽可能发挥产品的设计构思,提供更多、更便捷、更低成本的功能实现方案。如此等等,在整个产品设计阶段贯彻生态设计的理念,为保护自然环境和最大效能利用资源做出努力。

  机械产品创新设计必需解决新发展的挑战,新材料、信息技术、智能科学与生态环境等带来的将是长期面临的新问题。机械设计的发展是个动态的吐故纳新过程,只要我们睁开眼睛、敞开胸怀,以前期的机械机构设计、结构设计、强度和刚度设计、可靠性设计、优化设计和摩擦学设计等知识为基础,必将在新的世纪中创造出更多更好的新产品。

  [3]冯·贝塔朗菲.一般系统论——基础、发展和应用[A].林康义,魏宏森,等,译.影响世界的著名文献——自然科学卷[M].北京:新华出版社,1997.

  机械结构设计是机械设计的重要组成部分,各种分析计算试验的目的,都是为了把结构设计和制造得更好,工作的最终结果都要落实在结构设计方面。但是许多人往往花费大量的时间和精力,把机械设计的重点放在分析和计算方面,对结构设计相对缺乏关注。其中一个原因是因为现有的理论计算系统完整,容易理解和应用,而结构设计由于影响因素较多,涉及的方面复杂,不能够完整总结结构设计的规律;另外还由于设计者的结构设计经验不足,在设计时往往草率匆忙。这些情况直接影响了机械的整体质量,因此,有必要把结构设计重视起来。

  机械的结构设计是将机械的构型、设思以及机械系统的运动方案简图综合起来,再具体转化为具有合理结构的零部件的过程。

  在机械设计中,结构设计与理论计算一样占有极其重要的地位。这是由于一台机械上的所有零件尺寸,只有一小部分是由理论计算决定的,而设计者往往需要根据整机的功能、强度、刚度以及加工性、安装、调试、维修等方面的要求,进行综合分析考虑,然后做出判断,进而确定机械结构中大量的形状、尺寸以及零件间的相对位置关系。所以说结构设计涉及了许多领域,结构设计具有复杂性综合性。

  (1)结构是机械方案设计的具体体现。机械方案设计的结果都是以一定的结构形式表现出来,根据结构设计最终来完成零部件的加工、装配,满足机械产品的功能要求。

  (2)结构设计是进行科学计算的基础。这是因为在机械设计中,计算是针对特定的机械结构进行的。

  (3)影响机械结构设计的因素有很多,比如有材料的选择、尺寸和形状的确定、加工工艺和装配工艺的确定等等,结构设计的合理与否将直接决定机械的成本高低。

  由上所述可知,合理进行机械的结构设计是显著提高产品质量的重要手段,结构设计是非常重要的。下面以轴的结构设计为例,来说明机械结构设计的应用。

  轴的结构设计的任务,就是对轴进行合理设计,确定全部结构外形及其尺寸。影响轴结构的相关因素有很多,如在机器中轴的安装位置和要求,轴上零件的装配方案,轴上作用力和分布情况;轴上零件的相互位置及其固定方式;轴承的类型及其安装固定方式,轴的加工制造及装配工艺等要求。设计前有些因素是知道的,有些因素则是在设计过程中逐步确定的。轴的结构设计比较复杂,具有较大的灵活性和多样性,往往根据具体的工作情况而变化,对轴的结构来说,没有标准的设计形式。

  但是在进行轴的结构设计时,不论遇到何种情况,都要满足下面几点设计要求:轴和轴上零件有确定的工作位置;轴上的零件便于安装拆卸和调整;轴的结构设计还要使轴具有良好的加工工艺性。

  (1)拟定轴上零件的装配方案。轴结构设计的前提要先拟定轴上零件的装配方案,来决定轴的形式。也就是要预先确定出主要零件在轴上的装配顺序、装配方向以及各零件之间的相互关系。要先设计出几个方案,进行分析对比,最后选择最佳的方案。

  (2)轴上零件的定位。轴上零件的轴向定位主要采用套筒、轴肩、圆螺母、轴承端盖、轴端挡圈等来确定。轴上零件的周向定位常用的有键连接、销连接、花键连接、过盈配合、紧定螺钉等。

  (3)轴的各段直径和长度的确定。在确定了轴上零件的装拆方案和定位以后,轴的形状就基本确定了。一般按轴所承受的扭矩估算出直径,并作为轴的最小直径,然后再根据前面轴上零件的装配和定位,逐步计算出各段轴的直径和长度。对于有配合要求的轴段,要按照设计手册采用标准直径;各轴段的长度的确定,主要根据轴上零件的宽度等;同时还要考虑零件的装配调整空间等。

  设计者在进行机械结构设计时,往往有很多困惑,尤其是初学者,除了按照常规的方法进行结构设计外,怎样才能设计出精美的机器零件,提高结构设计水平呢?下面和大家分享一下笔者的思考

  (1)注重细节,总结教训。机械设计能够成功,设计者除了有扎实的基本功,还要有设计经验和阅历,更要认真地分析使用者的要求,研究和细化机械使用的全过程和可能出现的问题,并根据设计的案例进行归纳,吸取教训总结经验,这样才能设计出合理的机器。

  (2)考虑制造安装,简化维修环节。机械结构的设计贯穿于设计、制造以及使用和维修的整个过程,任何疏忽都会酿成大错。一个好的设计是离不开制造的,对加工制造过程了解的越多,越有利于提高结构设计的水平。另外好的设计也要注重设备的维修性,更换部件时不要拆除全部机器,尽量将维修过程简化。

  (3)不断学习,取长补短。设计者在结构设计时,要多参考一些成功的设计案例,多看一些设计的书籍和资料,逐步完善设计理念,采百家之长,这样设计时自然信手拈来。设计者只有通过不断地加强学习,才能够提高结构设计的质量。

  结构设计在机械设计方面具有举足轻重的作用。对于一个机械设计来说,整个机械的质量、寿命、成本等,与机器的结构设计密切相关。设计师在机械结构设计中,除了必要的设计能力,还需要严谨的科学态度,只有不断地学结,不断地积累经验,才能不断地进步。本篇文章仅是对有关机械结构设计的一些粗浅的认识,旨在提醒机械设计者在进行机械设计的过程中,重视对结构设计的把握,进而设计出更加科学、合理、完美的机械。

  零件的加工是机械产品质量的保证,而如何才能判定该机械加工的质量是否合格,可以从两个方面着手:机械加工精度的高低和机械表面加工的好坏。在进行机械加工时,因为受到多方面条件的制约,使得刀具和工件原来准确的位置发生了变化,从而导致加工形成的零件很难达到目标要求,诸如这样的符合程度可以形象地称之为零件加工质量和零件加工误差。加工质量指的是零件加工完成之后所表现出来的实际几何参数,即长度、大小、位置等是否能够满足零件加工的目标要求。而零件加工误差则是指零件加工完成之后与目标所不符合的程度。事实上,零件加工质量和零件加工误差成正比关系,如果加工质量越好,加工误差则越低;同样的如果加工质量越差,则加工误差也会越高。另外,零件加工的好坏需要根据国家的实际规定来辨别。

  机械加工精度是指零件经过加工之后所形成的不同大小、形状、位置与目标零件所符合的程度,而这两者间的不符合程度则被称之为零件加工误差,零件加工的精度受到误差的影响。需要注意的是零件加工的精度主要有以下几个方面:第一,大小精度:将加工表面和测量基准约束在某一特定范围内;第二,形状精度:约束了零件加工表面的形状误差,诸如圆柱度此类;第三,位置精度:约束了零件加工的表面和基准零件所要求的位置误差,诸如平行位置和垂直位置此类。机械加工的过程中,误差是无法消除的,但可以受到有效的限制。根据对零件加工误差的分析,充分了解到误差发生的规律,制定有效的措施做到最大限度上的减少误差,切实提高机械加工的精度。因为零件加工时会受到很多条件的制约,导致了同一种解决方案在对不同的零件加工时所形成的效果不同。无论是哪一种零件加工的方法,只要加工人员按照规定认真完成,根据实际的加工参数进行合理的调整,则有利于大幅度的提高机械加工的精度。

  主轴回旋误差指的是实际的主轴线与目标要求的主轴线之间的差距,一般表现出以下三种类型:纯径向回转、纯角度回转、主轴来回窜动。

  机床导轨是决定重要零件位置的参照物,也是零件运动的基本参照物,出现的误差对正在进行加工零件的精度有十分不利的影响,主要体现在:在水平直线上所呈现出的度数、在垂直平面内所呈现的垂直度以及机床导轨前后之间的差异性。

  刀具制造误差指的是零件加工的精度根据选择的不同刀具而表现出来不同差异性。通常情况下,刀具制造误差并不能够影响到零件加工的精度,而形成误差的主要原因在于被加工零件的大小。与此同时,刀具使用程度对加工的零件具有十分不利的影响,导致零件加工的误差存在。

  夹具主要是促进工件向恰当的位置靠拢,所以说夹具的制造误差十分不利于零件加工的精度。夹具制造误差主要分为实际的定位误差、装配误差、分度误差以及磨具的损害程度等。夹具使用时间越高,损害程度就会越大,与之相应的定位误差也就会越大。如果零件受到热量的影响则会导致变形,影响到原有的零件组成关系,不利于机械的加工精度。另外,由于市场上零件的质量不同、型号不同,对热量的承受能力也就不同。由于刀具自身的大小和热量承受能力,因此存在很大的温度上升空间,而形成的刀具热伸缩则会导致零件加工的误差。粗的零件加工热伸缩不会造成太大的误差损失,而稍微细致一点的精密零件则会在很大程度上受到热伸缩的影响,而导致大幅度的变形形成零件加工的误差。

  机械加工的原理误差主要制的是根据相似的发展活动或是相似的切断活动,而进行零件加工的过程中所形成的误差。例如,机械加工中常见的滚轮,机床的齿轮滚刀一般有以下两类误差:其一是切割齿轮的的相似性误差,因为受到刀具制造的影响,而选取的阿基米德原理,也可以将直廊基本蜗杆转而由开线型蜗杆取代;因为受到滚刀齿轮数量的限制,真正加工出来的齿形则会呈现出折现的形状,区别于目标中的齿轮开线。利用选取的相似发展运动以及相似的切割轮廓运动,尽管有机械加工原理误差的存在,但是能够有效地简化机床的结构模式,大大提高机械加工的效率,往往有时还能够得到较高的加工精度。所以说只要机械加工的原理误差被控制在一定的范围之内,就能够在实际的生产过程中得到大力的推行。

  综上所述,在进行机械加工的过程中,误差的存在是必不可少的,而如果能够结合实际的加工要求寻找出机械加工存在的不足并作有效的弥补,则会在最大限度上降低机械加工的误差,获得较高的机械加工精度。因此可以这样说,如果能够将机械加工的误差控制在特定的范围内,则会使得零件加工的质量也有所保证。

  [1] 吴晓英.试论影响机械加工精度的主要因素[J].机械管理开发,2012(08).

  “机械设计”作为机械类本科学生一门十分重要的专业基础课,在机械类专业学生的培养体系中占有十分重要的地位。该课程既是“机械制图”“材料力学”“理论力学”“机械原理”等先导基础课程的具体应用,也是后续各种专业课的基础,在整个培养体系中起到承上启下的桥梁作用。[1]该课程的教学效果不仅影响学生相关专业课程的学习质量,也对学生应用及创新能力的培养具有至关重要的作用。

  “机械设计”作为机械类专业学生的一门核心课程,自建国初期就在国内各工科院校机械类专业普遍开设,至今已有60余年的历史。虽然经过了漫长的时代变迁和教育体系的不断改革,但“机械设计”课程在机械类专业本科教育体系中的地位没有丝毫改变,且在一定程度上还得到了强化。不仅在课程内容的广度与深度上有了较大的拓展,而且在教学模式上也进行了较大的变革。但总体而言,“机械设计”课程的教学水平仍与当前人才培养目标的总体要求存在较大差距。主要表现在以下几个方面:

  现行的《机械设计》教材的基本框架与数十年前其前身“机械设计”课程基本一致,在内容上虽然局部有所增减,但主体内容并无较大变化,基本仍是以介绍各种通用零部件的设计计算为主,所采用的方法仍以传统的经验设计与简化计算为主。[2]然而随着现代科技的不断进步,各种先进设计技术如有限元技术、可靠性设计技术、数字仿真技术等均已广泛应用于机械设计领域,这些技术在如今的绝大多数机械设计教材中都没有提及,个别教材虽有所介绍,但纯属介绍性质一笔带过,没有具体阐述。相反,一些在实际应用中已被淘汰的陈旧技术与方法仍被广泛采用,从而造成了理论学习与实际应用的脱节。

  任何一种机器都是由各种零件组合而成的,机器的性能虽与单个零件的工作性能有一定关系,但其总体性能与工作寿命并不是由单个零件决定的,而取决于整个装配体的综合性能。因此,机械设计不仅要关注各种零件的设计方法,更要关注各种零件之间的关联与协调,应以机器的总体性能作为考查设计方案的主要指标。现有的“机械设计”教学中,除轴的设计中考虑了其他零件因素外,其余零件的设计均基于自身的结构特点与工作性能,没有将零件之间的关联性纳入设计考虑范畴,导致零件设计与机器设计关联度不够,在实际应用时,难以达到机器总体性能与零件性能的最佳匹配。

  目前各高校“机械设计”课程教学基本仍以传统的灌输式的授课方法为主。由于课程内容多,教师基本上是满堂灌,而学生被动听,很少有机会进行互动。[3]由于课程涉及的内容十分广泛,涉及到通用机械的绝大多数零件,对每一类零件又涵盖了从基本概念介绍、工作性能分析及结构设计计算等各方面的内容,如果不能做到提纲挈领,主次分明,会给学生的学习带来困惑,让他们感觉不着边际、没有重点。对于学生而言,课堂上绝大多数时间要听课和记笔记,课后时间则忙于完成作业,很少有机会对所学内容进行深入理解与体会,一旦遇到实际设计问题,则往往感觉茫然无措、无从下手。

  现有的《机械设计》教材与授课内容的重点放在相关理论和方法的介绍方面,对应用能力与创新能力的培养普遍重视不足。[4]“机械设计”课程的主要任务是介绍通用机械零件的一般设计思路与方法,并用于生产实际。因此,该课程不应只是简单地介绍各种零件的一般设计流程,还应结合具体案例介绍同类零件的设计要点,对实际设计过程中的难点及技巧问题进行重点介绍。绝大多数教师在授课与安排课后作业时比较注重基本概念的掌握,但对学生在设计思路与设计技巧方面的训练较少,导致学生实际应用能力不足。[5]

  要有效解决目前“机械设计”课程教学中的各种问题,须从教材建设、教学内容与教学方法改革等多个方面进行综合考虑,研究一套系统完善、行之有效的课程教学体系。具体而言,应从以下几个方面着手:

  教材是教师教学与学生学习的主要工具,对课程教学质量具有决定性作用。作为一门机械学科的经典课程,经过近六十年的发展,在教材体系结构和内容方面一直在不断地调整和完善,由西北工业大学主编、高等教育出版社出版的《机械设计》教材属于比较经典的版本,目前已更新到第九版。由邱怀宣主编、同属高等教育出版社的教材已更新到第四版。其他还有许多版本的教材,这些教材各有特色,但在体系结构与内容上均大同小异,也都存在技术内容更新不及时、关联性不足等问题。为了适应时展对教学内容的要求,应加大力度进行教材建设与教学内容改革。应跳出传统机械设计教学体系的束缚,根据现实技术与培养目标要求重新组织教材的体系结构,剔除已经过时的技术与方法,将各种已经成熟并广泛应用的最新设计理念与方法纳入机械设计教学范畴。从机械设计的总体目标出发,即对各种零件的设计思路与方法进行详细介绍,同时对设计中如何处理不同零件之间的协调与配合问题进行讨论,从而增加教材在内容上的关联性,避免相互割裂。

  现行“机械设计”课程中各种零件的设计方法仍沿用几十年前的传统设计方法,受当时技术条件的限制,为了便于和简化计算,零件设计多以经验法为主。这些方法在原理上并不完善,比如,斜齿圆柱齿轮与直齿锥齿轮的设计计算是利用直齿圆柱齿轮的相关理论来实现的,然而斜齿轮与锥齿轮的几何结构、受载特性和啮合机理与直齿轮有本质上的差别,因此,采用这种转化方法设计出的结果与实际情况有很大的偏差。不仅如此,直齿圆柱齿轮的设计计算也不是按实际应用情况进行的,其实际齿形渐开线齿廓,但设计时按柱体悬臂梁进行计算,且设计过程中使用了大量的经验参数,因此设计结果也只是经验值。为了保证零件的可靠性,只能通过增加安全系数来保证,从而导致设计出的零件尺寸偏大,不仅经济性不好,且对整机性能产生重要影响。随着CAD、CAE等现代设计技术的不断发展和完善,各种复杂零件的精确设计与仿真分析可以很容易地实现,采用PROE、ANSYS等应用软件可以精确完成各种齿轮、带传动、链传动、弹簧等复杂零件的精确造型、运动学分析、动力学分析等各种仿真分析,可以对这些零件进行精确设计。这些先进的技术目前均已在机械制造工程领域广泛应用,但目前国内的“机械设计”课程教学基本很少涉及。因此,需配合教材建设对现行的教学内容进行改革,强化各种现代设计方法的教授与应用,并在此基础上进行教学方法的改革。抛弃传统的教师灌输式教学、学生被动学习,上课记笔记、课后赶作业的教学模式,充分利用多媒体技术和虚拟仿真技术强化教师与学生的互动,激发学生的学习兴趣与学习热情,把部分流程式的课后作业转换为能培养创新思维与动手能力的应用设计,强化学生使用各种现代设计工具的能力。

  虚拟仿真技术由于具有逼真模拟现实事物与环境、可进行交互操作等优点,已在全世界各个领域中广泛应用。在机械领域,仿真分析已成为机械设计的一个重要手段,它不仅可以直观呈现各种机械零件的实体结构,实现各种机构的运动仿真与干涉检查,还可以对各种机器及组成机器的各个零件进行静、动力学仿真分析,从而有效缩短设计周期,提高设计质量与效率。因此,在“机械设计”教学中必须充分发挥虚拟仿真技术的作用,一方面利用仿真技术在课堂上把各种零件的结构及运动学及动力学特性直观地呈现给学生,加速学生对相关知识的理解、消化与吸收;另一方面利用虚拟仿真技术建立网上虚拟实验室,完成各种因条件限制而无法开设的实验,有效弥补目前“机械设计”课程教学中实验设备欠缺、实验种类偏少的不足;此外,鼓励学生参与机械设计教学内容相关的虚拟设计,建立资源库,不仅可以丰富教学素材,也可以提高学生的学习兴趣与应用能力。

  传统的“机械设计”课程教学分为理论教学与实践教学两部分,理论教学通过课堂授课完成,实践教学则在课程结束后通过课程设计来完成。由于课堂教学与课程设计相分离,因此在理论学习阶段,主要强调基础知识和基本概念的掌握,对应用缺乏认识,由于各种机械零件在结构、功能和设计方法方面具有相对独立性,因此所学知识往往是零碎、孤立的,没有很好的融合,在课程设计阶段难以有效地进行综合应用。课程设计通常为3~4周,一般安排在学期末,学生为了应对期末考试,难以专心完成课程设计,真正投入课程设计的时间并不多。许多同学在完成课程设计时基本是机械地照搬课程设计指导书的步骤与方法,缺乏对设计课程的深入思考与设计方案的精心设计,没有充分发挥课程设计应有的功能。为了有效解决该问题,应将课程设计与课堂教学进行融合。课堂教学一开始,就将设计题目下达到学生,让学生对设计对象与目标有明确的了解。在课堂教学过程中,在涉及到课程设计的每一部分内容时,教师进行适当介绍,让学生提前思考,待全部课堂教授完成时,学生已对设计内容有了全面认识,甚至有了明确的思路与方案,在后面的课程设计阶段即可做到有的放矢,少走弯路。不仅可以有效提高课程设计的效率,也会大大提高课程设计的质量与效果。

  “机械设计”课程教学是一项复杂的系统工程,涉及到教师与学生、课程教材与实验设备、课堂教授与课后作业、理论学习与实践训练等多方面的内容。要有效提高该课程的教学质量,必须不断深化课程教学改革,强化教材与教学方法改革,改进课程设计及实验教学模式,建立一套符合社会需求与时展的课程教学体系。

  [1]郝秀红,邱雪松,王琼,等.机械设计课程设计教学改革初探[J].教学研究,2011,34(3):51-54.

  [2]莫海军,吴上生,蓝民华,等.机械设计教材中几个问题的探讨[J].机械设计与研究,2009,25(3):117-120.

  [3]师素娟.机械设计课程教学方法改革与探索[J].华北水利水电学院学报,2006,22(1):55-57.

  在机械加工领域中,应用数控设备实现的机械零件以及机械产品的高效加工手段,是一种将传统的加工制造技术与数字化技术相结合应用在机械零件以及机械产品加工领域中的先进加工制造技术,它是机械加工制造数字化与信息化的一种重要体现,与传统机械加工制造技术相比,具有相对突出的应用特征与优势。随着计算机信息技术的不断发展提升,机械加工制造的信息化水平也得到了快速的发展提升,数控机床作为机械加工制造信息化的一种重要手段,在机械加工制造领域中的应用实现越来越多,并且越来越广泛。另一方面,在加工制造技术的不断发展推动下,机械零件以及产品加工过程中,不仅进行加工的对象越来越多样化和复杂化,并且对于产品加工精度以及功能、效率等的要求也越来越高,而数控设备高效加工对于产品加工的这一需求有很好的满足和实现,下文就将结合某机械加工企业的产品加工制造任务,在对于普通设备与数控设备的加工特征优势进行对比情况下,对于数控设备的高效加工进行分析论述。

  以某企业机械零件等产品加工制造的实际任务为例,该企业在机械产品加工制造过程中承揽了某型号纯铜质材的外协产品,该零件产品的外形相对比较小,并且形状结构较为复杂,在实际加工制造中,具有较为突出的加工制造难点。尤其是使用普通的设备进行加工,很难对于该零件产品的图样需求进行满足和实现,使该零件产品的加工制造面临着实际的困难需求。

  首先,进行该零件产品的加工制造中,由于该零件是一种纯铜材质的零件,而纯铜的材料的强度与硬度都相对比较低,因此,在进行零件的装夹以及切削过程中,一旦出现装夹力度过紧或者是切削的作用力过大等,都会导致零件产品在加工制造中出现变形等情况问题,或者是造成零件产品的表面出现夹伤,影响零件产品加工制造质量与效果。而另一方面,由于纯铜材料的塑性比较高,在切削过程中发生的变形作用比较大,容易与刀具发生黏结,造成加工事故与问题发生,为了避免这一情况与问题的发生,在进行该企业的所需的零件产品加工制造中,应注意选择高速钢或者是钨钴类材质比较硬的合金作为铣刀材料,并且在铣削过程中采用50 m/min至100 m/min的切削速度进行加工制造,以避免问题发生,影响零件产品加工制造质量。

  其次,由于该企业进行加工制造的零件产品本身比较小并且形状复杂,因此,进行切削加工中不容易进行装夹,这也是该零件产品加工制造中面临的一个实际困难。由于该企业进行加工制造的零件产品从外形上看,像一个人体的脚,并且零件的厚度仅有5 mm,再加上零件外形的不规则性特征,使用普通的机械加工设备很难完成加工制造任务,而通过数控机床设备进行零件外形的切削加工,又需要使用专门的装夹机具或者是留工艺的夹头来帮助实现加工制造。根据这一情况,再加上该企业对于此类零件产品加工制造数量较少,进行该零件产品的加工制造中,为节约加工制造成本,提高加工制造的效率,决定利用数控加工设备中的车、铣以及钻等设备功能,实现该零件产品的一次加工成型,以完成零件产品加工需求。

  通常情况下,在机械零件的加工制造中,应用普通设备进行机械零件的加工制造,其工艺流程主要为下料、外形铣隔、钻孔以及切断、去毛刺、检验等。对于上述企业需要加工制造的外协零件来讲,首先,在下料环节,进行下料加工的棒料单件尺寸为33 mm×25 mm,并且在下料加工过程中棒料两端面需要各自留有1 mm余量空间,切断尺寸为2 mm,下料中的工艺夹头尺寸设置为15 mm;其次,进行机械零件的外形铣隔中,要使用软三抓将工艺夹头夹持在数控铣床上,以进行零件外形的加工,同时进行点钻孔设置,并保障位置准确;再次,需要在普通车床上将工艺夹头切断,期间注意保证零件的厚度为5 mm,然后再由钳工进行零件产品的毛刺去除,对于经机械加工的零件的所有毛刺去除;最后进行加工零件的质量检验。

  应用数控设备进行机械零件以及产品的加工制造时,其工艺流程主要包括下料以及铣外形、钻孔、切断、去毛刺和检验,与普通设备进行机械零件加工的工艺流程基本相似。

  首先,应用数控设备进行上述企业所需的外协产品加工制造时,进行零件产品的下料制作中,进行下料的尺寸仍然为33 mm×25 mm的棒料,并且在棒料两端各预留1 mm的余量,切断3 mm,不使用工艺夹头,利用三爪自动心卡盘装夹工件,进行自动定心后,进行加工制造零件材料的装夹实现,这种装夹方式不仅装夹效率比较高,并且在实际装夹中考虑到零件材料的特殊性,可以使用软三爪进行棒料的装夹实现。然后在零件产品的加工过程中,进行零件产品的材料毛坯装夹完成后,进行车外圆,然后进行钻孔位置的设置并进行钻孔实施,最后,进行零件产品腰形槽以及外形部分的铣削,最后进行2 mm的切断加工。值得注意的是,利用数控设备进行机械零件加工制造中,对于坐标原点的选择实施,应在进行零件加工制造程序编制设置前,根据加工制造零件的具体情况进行坐标原点的选择,通常情况下,对于X轴的零件原点多设置在工件轴线上,而Z轴原点多根据工件设计的基础标准设置在工件轴向右端面。如图1所示,即为上述某企业零件产品的坐标原点设计示意图。

  总之,应用数控设备进行零件产品的加工制造,不仅零件加工精度与加工效率有很大保障提升,并且能够满足较为复杂的零件产品加工需求,还能够在一定程度上降低零件加工的成本,具有比较突出的特征优势,值得予以关注和研究。

  [1]高国红,孙玉刚.提高数控加工中心切削效率的途径[J].才智,2011(21).

  [2]吕明珠,刘世勋.数控加工中心电磁兼容(EMC)测试方法的研究[J].电工技术,2011(08).

  [3]陈伟琪.浅谈数控加工中心的定位精度检测与补偿[J].计量与测试技术,2011(06).

  传统机械零部件的设计带来了运用中出现的许多问题:零部件容易腐蚀损坏;零部件容易疲劳损坏,断裂、表面剥落等;零部件容易摩擦损坏等等。这些问题的出现,都是机械零部件传统的设计局限性所产生的。机械机械零部件设计是人类为了实现某种预期的目标而进行的一种创造性活动。传统机械机械零部件设计的特点是以长期经验积累为基础,通过力学、数学建模及试验等所形成的经验公式、图表、标准及规范作为依据,运用条件性计算或类比等方法进行设计。传统设计在长期运用中得到不断的完善和提高,目前在大多数情况下仍然是有效的设计方法,但是它有很多局限:在方案设计时凭借设计者有限的直接经验或间接经验,通过计算、类比分析等,以收敛思维方式,过早地确定方案。这种方案设计既不充分又不系统,不强调创新,因此很难得到最优方案;在机械零部件设计中,仅对重要的零部件根据简化的力学模型或经验公式进行静态的或近似的设计计算,其他零部件只作类比设计,与实际工况有时相差较远,难免造成失误;传统设计偏重于考虑产品自身的功能的实现,忽略人―机―环境之间关系的重要性;传统设计采用手工计算、绘图,设计的准确性差、工作周期长、效率低。

  机械零部件设计的本质是创造和革新。IM电竞 IM电竞APP 下载现代机械机械零部件设计强调创新设计,要求在设计中更充分地发挥设计者的创造力,利用最新科技成果,在现代设计理论和方法的指导下,设计出更具有生命力的产品。

  设计者的创造力是多种能力、个性和心理特征的综合表现,它包括观察能力、记忆能力、想象能力、思维能力、表达能力、自控能力、文化修养、理想信念、意志性格、兴趣爱好等因素。其中想象能力和思维能力是创造力的核心,它是将观察、记忆所得信息有控制地进行加工变换,创造表达出新成果的整个创造活动的中心。创造力的开发可以从培养创新意识、提高创新能力和素质、加强创新实践等方面着手。设计者不是把设计工作当成例行公事,而是时刻保持强烈的创新愿望和冲动,掌握必要创新方法,加强学习和锻炼,自觉开发创造力,成为一个符合现代设计需要的创新人才。

  发散思维又称辐射思维或求异思维等。它是以欲解决的问题为中心,思维者打破常规,从不同方向,多角度、多层次地考虑问题,求出多种答案的思维方式。例如,若提出“将两零部件联结在一起”的问题,常规的办法有螺纹联结、焊接、胶接、铆接等,但运用发散思维思考,可以得到利用电磁力、摩擦力、压差或真空、绑缚、冷冻等方法。发散思维是创造性思维的主要形式之一,在技术创新和方案设计中具有重要的意义。

  创造力的核心是创新思维。创新思维是一种最高层次的思维活动,它是建立在各类常规思维基础上的。人脑在外界信息激励下,将各种信息重新综合集成,产生新的结果的思维活动过程就是创新思维。机械机械零部件设计的过程是创新的过程。设计者应打破常规思维的惯例,追求新的功能原理、新方案、新结构、新造型、新材料、新工艺等,在求异和突破中体现创新。

  机械零部件设计是机械设计的重要组成部分,机械运动方案中的机构和构件只有通过零部件设计才能得到用于加工的零部件工作图和部件装配图,同时它也是机械总体设计的基础。机械零部件设计的主要内容包括:根据运动方案设计和总体设计的要求,明确零部件的工作要求、性能、参数等,选择零部件的结构构形、材料、精度等,进行失效分析和工作能力计算,画出零部件图和部件装配图。机械产品整机应满足的要求是由零部件设计所决定的,机械零部件设计应满足的要求为:在工作能力上要求具体有强度、刚度、寿命、耐磨性、耐热性、振动稳定性及精度等;在工艺性上要求加工、装配具有良好的工艺性及维修方便;在经济性上的要求主要指生产成本要低。此外,还要满足噪声控制、防腐性能、不污染环境等环境保护要求和安全要求等。这些要求往往互相牵制,需全面综合考虑。

  机械零部件由于各种原因不能正常工作而失效,其失效形式很多,主要有断裂、表面压碎、表面点蚀、塑性变形、过度弹性变形、共振、过热及过度磨损等。为了保证零部件能正常工作,在设计零部件时应首先进行零部件的失效分析,预估失效的可能性,采取相应措施,其中包括理论计算,计算所依据的条件称为计算准则,常用的计算准则有:一是强度准则。强度是机械零部件抵抗断裂、表面疲劳破坏或过大塑性变形等失效的能力。强度要求是保证机械零部件能正常工作的基本要求。二是刚度准则。刚度是指零部件在载荷(下转第57页)(上接第58页)的作用下,抵抗弹性变形的能力。刚度准则要求零部件在载荷作用下的弹性变形在许用的极限值之内。三是振动稳定性准则。对于高速运动或刚度较小的机械,在工作时应避免发生共振。振动稳定性准则要求所设计的零部件的固有频率与其工作时所受激振源的频率错开。四是耐热性准则。机械零部件在高温工作条件下,由于过度受热,会引起润滑油失效、氧化、胶合、热变形、硬度降低等问题,使零部件失效或机械精度降低。因此,为了保证零部件在高温下正常工作,应合理设计其结构及合理选择材料,必要时须采用水冷或气冷等降温措施。五是耐磨性准则。耐磨性是指相互接触并运动零部件的工作表面抵抗磨损的能力。当零部件过度磨损后,将改变其结构形状和尺寸,削弱其强度,降低机械精度和效率,以致零部件失效报废。因此,机械设计时应采取措施,力求提高零部件的耐磨性。

  表面粗糙度是反映零部件表面微观几何形状误差的一个重要技术指标,是检验零部件表面质量的主要依据;它选择的合理与否,直接关系到产品的质量、使用寿命和生产成本。机械零部件表面粗糙度的选择方法有3种,即计算法、试验法和类比法。在机械零部件设计工作中,应用最普通的是类比法,此法简便、迅速、有效。应用类比法需要有充足的参考资料,现有的各种机械设计手册中都提供了较全面的资料和文献。最常用的是与公差等级相适应的表面粗糙度。在通常情况下,机械零部件尺寸公差要求越小,机械零部件的表面粗糙度值也越小,但是它们之间又不存在固定的函数关系。在实际工作中,对于不同类型的机器,其零部件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的。这就是配合的稳定性问题。在机械零部件的设计和制造过程中,对于不同类型的机器,其零部件的配合稳定性和互换性的要求是不同的。在设计工作中,表面粗糙度的选择归根到底还是必须从实际出发,全面衡量零部件的表面功能和工艺经济性,才能作出合理的选择。

  要充分运用机械学理论和方法,包括机构学、机械动力学、摩擦学、机械结构强度学、传动机械学等及计算机辅助分析的不断发展,对设计的关键技术问题能作出很好的处理,一系列新型的设计准则和方法正在形成。计算机辅助设计(CAD)是把计算机技术引入设计过程,利用计算机完成选型、计算、绘图及其他作业的现代设计方法。CAD技术促成机械零部件设计发生巨大的变化,并成为现代机械设计的重要组成部分。目前,CAD技术向更深更广的方向发展,主要表现为以下基于专家系统的智能CAD;CAD系统集成化,CAD与CAM(计算机辅助制造)的集成系统(CAD/CAM);动态三维造型技术;基于并行工程,面向制造的设计技术(DFM);分布式网络CAD系统。 【参考文献】

  [1]王启,等.常用机械零部件可靠性设计[M].北京:机械工业出版社,1996.

  [3]赵冬梅.机械设计基础[M].西安:西安电子科技大学出版社,2004.

  产品展示 PRODUCTS